Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Antioxidants (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627536

RESUMO

Inflammation is a key characteristic of both acute and chronic kidney diseases. Preclinical data suggest the involvement of the NLRP3/Inflammasome, receptor-interacting protein kinase-3 (RIPK3), and NRF2/oxidative pathways in the regulation of kidney inflammation. Cellular communication network factor 2 (CCN2, also called CTGF in the past) is an established fibrotic biomarker and a well-known mediator of kidney damage. CCN2 was shown to be involved in kidney damage through the regulation of proinflammatory and profibrotic responses. However, to date, the potential role of the NLRP3/RIPK3/NRF2 pathways in CCN2 actions has not been evaluated. In experimental acute kidney injury induced with folic acid in mice, CCN2 deficiency diminished renal inflammatory cell infiltration (monocytes/macrophages and T lymphocytes) as well as the upregulation of proinflammatory genes and the activation of NLRP3/Inflammasome-related components and specific cytokine products, such as IL-1ß. Moreover, the NRF2/oxidative pathway was deregulated. Systemic administration of CCN2 to C57BL/6 mice induced kidney immune cell infiltration and activated the NLRP3 pathway. RIPK3 deficiency diminished the CCN2-induced renal upregulation of proinflammatory mediators and prevented NLRP3 modulation. These data suggest that CCN2 plays a fundamental role in sterile inflammation and acute kidney injury by modulating the RIKP3/NLRP3/NRF2 inflammatory pathways.

2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982834

RESUMO

Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.


Assuntos
COVID-19 , Falência Renal Crônica , Peritonite , Insuficiência Renal Crônica , Humanos , Peritônio , Diálise Renal/efeitos adversos , COVID-19/complicações , Soluções para Diálise/efeitos adversos , Peritonite/induzido quimicamente , Insuficiência Renal Crônica/complicações , Inflamação/complicações , Falência Renal Crônica/terapia , Falência Renal Crônica/complicações , Imunidade
3.
Nutrients ; 15(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986078

RESUMO

As life expectancy increases in many countries, the prevalence of age-related diseases also rises. Among these conditions, chronic kidney disease is predicted to become the second cause of death in some countries before the end of the century. An important problem with kidney diseases is the lack of biomarkers to detect early damage or to predict the progression to renal failure. In addition, current treatments only retard kidney disease progression, and better tools are needed. Preclinical research has shown the involvement of the activation of cellular senescence-related mechanisms in natural aging and kidney injury. Intensive research is searching for novel treatments for kidney diseases as well as for anti-aging therapies. In this sense, many experimental shreds of evidence support that treatment with vitamin D or its analogs can exert pleiotropic protective effects in kidney injury. Moreover, vitamin D deficiency has been described in patients with kidney diseases. Here, we review recent evidence about the relationship between vitamin D and kidney diseases, explaining the underlying mechanisms of the effect of vitamin D actions, with particular attention to the modulation of cellular senescence mechanisms.


Assuntos
Nefropatias , Insuficiência Renal Crônica , Deficiência de Vitamina D , Humanos , Vitamina D , Insuficiência Renal Crônica/complicações , Rim , Vitaminas/uso terapêutico , Nefropatias/etiologia , Deficiência de Vitamina D/epidemiologia , Senescência Celular
4.
An. R. Acad. Nac. Farm. (Internet) ; 89(1): 23-51, Enero-Marzo 2023. graf
Artigo em Inglês | IBECS | ID: ibc-219534

RESUMO

Apart from their well-stablished antihypercholesterolemic effect, HMG-CoA reductase inhibitors, commonly known as statins, have been described to exert pleotropic effects at different levels, including anti-inflammatory and pro-apoptotic responses. Since its discovery, and based on these properties, a broad range of studies have tried to evaluate their potential beneficial effects in other pathological situations beyond cardiovascular diseases (CVDs). Although statins effects have been evaluated in different types of diseases including not only in vitro and in vivo experiments, but also statin administration in patients, the current bibliography about statins is mainly focused on specific diseases and/or cell types. Hence, in this review, we aim to summarize every virtue attributed to statins in many pathologies, comprehending from the wellknown effects in CVDs to the recent discovered beneficial effects in the COVID-19 disease, trough cancer, brain and autoimmune diseases or even pathogen infections. We include the suggested mechanisms implicated in these effects, the current situation of the use of statins in different pathologies as well as their negative and/or opposite effects stated by some authors. Considering the substantial cost and slow pace of new drugs discovery and development besides the high attrition rates, several authors have remarked the need of repurposing old drugs to treat common and rare diseases. Given the low risk, the low overall development costs and the short development timelines, the purpose of this review is to emphasize the potential use of statins as multitarget drug to treat different pathologies. (AU)


Aparte de la actividad antihipercolesterolémica ampliamente descrita de los inhibidores de la HMG-CoA reductasa, conocidos como estatinas, estos fármacos también ejercen otros efectos pleiotrópicos, incluyendo respuestas antinflamatorias y proapoptóticas. Desde su descubrimiento, numerosos estudios han evaluado los efectos beneficiosos que ejercen en otras patologías diferentes a las que comúnmente se tratan con estatinas, como las enfermedades cardiovasculares (ECVs). Aunque se han evaluado sus efectos en estudiosin vitro e in vivo, así como en pacientes, la bibliografía existente está enfocada al uso de estatinas en una enfermedad o tipo celular concreto, por lo que, en esta revisión, pretendemos resumir en un mismo trabajo todas las virtudes atribuidas a las estatinas en numerosas patologías, que abarcan desde las ECVs hasta los beneficios recientemente descritos en relación a la COVID-19, considerando otras enfermedades comoel cáncer, patologías cerebrales y autoinmunes e incluso infecciones por agentes patógenos. Incluimos los mecanismos descritos en los efectos beneficiosos de las estatinas, la situación actual de su uso en diferentespatologías, así como la descripción de los efectos opuestos o negativos observados por algunos autores. El elevado coste y tiempo que implican el descubrimiento y desarrollo de nuevos fármacos, conlleva quemuchos autores propongan la reutilización de antiguos fármacos para el tratamiento de enfermedades tanto comunes como raras. Considerando el bajo riesgo, los bajos costes relativos de producción y los cortosplazos de desarrollo, el propósito de esta revisión es focalizar el potencial uso de las estatinas como fármacosmultiusos para el tratamiento de diferentes enfermedades. (AU)


Assuntos
Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/imunologia , Doenças Transmissíveis/tratamento farmacológico , Farmacologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/terapia , Doenças Autoimunes/tratamento farmacológico
5.
Kidney Int ; 102(6): 1305-1319, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921911

RESUMO

Chronic allograft dysfunction with progressive fibrosis of unknown cause remains a major issue after kidney transplantation, characterized by ischemia-reperfusion injury (IRI). One hypothesis to account for this is that spontaneous progressive tubulointerstitial fibrosis following IRI is driven by cellular senescence evolving from a prolonged, unresolved DNA damage response (DDR). Since cellular communication network factor 2 ((CCN2), formerly called connective tissue growth factor), an established mediator of kidney fibrosis, is also involved in senescence-associated pathways, we investigated the relation between CCN2 and cellular senescence following kidney transplantation. Tubular CCN2 overexpression was found to be associated with DDR, loss of kidney function and tubulointerstitial fibrosis in both the early and the late phase in human kidney allograft biopsies. Consistently, CCN2 deficient mice developed reduced senescence and tubulointerstitial fibrosis in the late phase; six weeks after experimental IRI. Moreover, tubular DDR markers and plasma urea were less elevated in CCN2 knockout than in wild-type mice. Finally, CCN2 administration or overexpression in epithelial cells induced upregulation of tubular senescence-associated genes including p21, while silencing of CCN2 alleviated DDR induced by anoxia-reoxygenation injury in cultured proximal tubule epithelial cells. Thus, our observations indicate that inhibition of CCN2 can mitigate IRI-induced acute kidney injury, DNA damage, and the subsequent DDR-senescence-fibrosis sequence. Hence, targeting CCN2 might help to protect the kidney from transplantation-associated post-IRI chronic kidney dysfunction.


Assuntos
Injúria Renal Aguda , Fator de Crescimento do Tecido Conjuntivo , Dano ao DNA , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fibrose , Rim/patologia , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/patologia
6.
Methods Mol Biol ; 2472: 187-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674901

RESUMO

The NOTCH signaling pathway is an evolutionarily conserved family of transmembrane receptors, ligands, and transcription factors. The NOTCH signaling is activated in many biological processes including nephrogenesis, tubulogenesis, and glomerulogenesis, as well as during pathological situations. Activation of Notch signaling is characterized by successive proteolytic cleavages triggered by the interaction between membrane-bound Notch receptors and ligands expressed on neighboring cells. In chronic kidney diseases, activation of the canonical NOTCH signaling pathway has been described. The following protocols will allow the direct assessment of Jagged-1/NOTCH signaling activation in biopsies of patients with chronic kidney diseases and in murine experimental models of renal damage.


Assuntos
Receptores Notch , Insuficiência Renal Crônica , Animais , Biópsia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Proteína Jagged-1/genética , Rim/metabolismo , Ligantes , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia
7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163470

RESUMO

Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.


Assuntos
Injúria Renal Aguda/metabolismo , Macrófagos/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Regeneração , Fenótipo Secretor Associado à Senescência
8.
Antioxidants (Basel) ; 11(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35204184

RESUMO

Chronic kidney disease (CKD) can be considered as a clinical model for premature aging. However, non-invasive biomarkers to detect early kidney damage and the onset of a senescent phenotype are lacking. Most of the preclinical senescence studies in aging have been done in very old mice. Furthermore, the precise characterization and over-time development of age-related senescence in the kidney remain unclear. To address these limitations, the age-related activation of cellular senescence-associated mechanisms and their correlation with early structural changes in the kidney were investigated in 3- to 18-month-old C57BL6 mice. Inflammatory cell infiltration was observed by 12 months, whereas tubular damage and collagen accumulation occurred later. Early activation of cellular-senescence-associated mechanisms was found in 12-month-old mice, characterized by activation of the DNA-damage-response (DDR), mainly in tubular cells; activation of the antioxidant NRF2 pathway; and klotho downregulation. However, induction of tubular-cell-cycle-arrest (CCA) and overexpression of renal senescent-associated secretory phenotype (SASP) components was only found in 18-month-old mice. In aging mice, both inflammation and oxidative stress (marked by elevated lipid peroxidation and NRF2 inactivation) remained increased. These findings support the hypothesis that prolonged DDR and CCA, loss of nephroprotective factors (klotho), and dysfunctional redox regulatory mechanisms (NRF2/antioxidant defense) can be early drivers of age-related kidney-damage progression.

9.
Biomolecules ; 12(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35204752

RESUMO

Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Nefropatias , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Fibrose , Rim/metabolismo , Nefropatias/metabolismo , Camundongos
10.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215234

RESUMO

Crescentic glomerulonephritis is a devastating autoimmune disease that without early and properly treatment may rapidly progress to end-stage renal disease and death. Current immunosuppressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain (BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, including histones and transcription factors. iBETs have demonstrated protective effects on malignancy, inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage, restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation. Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.

11.
Antioxidants (Basel) ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34943123

RESUMO

AKI, due to the fact of altered oxygen supply after kidney transplantation, is characterized by renal ischemia-reperfusion injury (IRI). Recent data suggest that AKI to CKD progression may be driven by cellular senescence evolving from prolonged DNA damage response (DDR) following oxidative stress. Cellular communication factor 2 (CCN2, formerly called CTGF) is a major contributor to CKD development and was found to aggravate DNA damage and the subsequent DDR-cellular senescence-fibrosis sequence following renal IRI. We therefore investigated the impact of CCN2 inhibition on oxidative stress and DDR in vivo and in vitro. Four hours after reperfusion, full transcriptome RNA sequencing of mouse IRI kidneys revealed CCN2-dependent enrichment of several signaling pathways, reflecting a different immediate stress response to IRI. Furthermore, decreased staining for γH2AX and p-p53 indicated reduced DNA damage and DDR in tubular epithelial cells of CCN2 knockout (KO) mice. Three days after IRI, DNA damage and DDR were still reduced in CCN2 KO, and this was associated with reduced oxidative stress, marked by lower lipid peroxidation, protein nitrosylation, and kidney expression levels of Nrf2 target genes (i.e., HMOX1 and NQO1). Finally, silencing of CCN2 alleviated DDR and lipid peroxidation induced by anoxia-reoxygenation injury in cultured PTECs. Together, our observations suggest that CCN2 inhibition might mitigate AKI by reducing oxidative stress-induced DNA damage and the subsequent DDR. Thus, targeting CCN2 might help to limit post-IRI AKI.

12.
Clin Sci (Lond) ; 135(16): 1999-2029, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34427291

RESUMO

Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.


Assuntos
Matriz Extracelular/metabolismo , Rim/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Biomarcadores/metabolismo , Fenômenos Fisiológicos Celulares , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Camundongos , Insuficiência Renal Crônica/diagnóstico
13.
Front Med (Lausanne) ; 8: 688060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307414

RESUMO

Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.

14.
Front Pharmacol ; 12: 662020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239439

RESUMO

Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function, and prolonged cell-cycle arrest) have been linked to cellular senescence, a process implicated in regeneration failure and progression to fibrosis. However, the molecular and pathological basis of the age-related increase in AKI incidence is not completely understood. To explore these mechanisms, experimental AKI was induced by folic acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score, KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and macrophages) and proinflammatory gene expression were higher in AKI kidneys of old than of young mice. Tubular cell death in FA-AKI involves several pathways, such as regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was significantly overexpressed in old, injured kidneys, suggesting an age-related apoptosis suppression. AKI kidneys displayed evidence of cellular senescence, such as increased levels of cyclin dependent kinase inhibitors p16ink4a and p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1 mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than in young FA-AKI mice, as well as the expression of senescence-associated secretory phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular senescence in the immune cells ("immunosenescence") are involved in the increased severity of AKI in old mice. In contrast, expression of renal protective factors was dramatically downregulated in old AKI mice, including the antiaging factor Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted in more severe AKI after the exposure to toxic compounds. This increased toxicity may be related to magnification of proinflammatory-related pathways in older mice, including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis, and overactivation of cellular senescence of resident renal cells and infiltrating inflammatory cells.

15.
Nefrologia (Engl Ed) ; 41(3): 244-257, 2021.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33775443

RESUMO

Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 lymphocytes and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and target organ damage. Studies in mice have shown that IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Preclinical studies on arterial hypertension have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, blocking IL-17A by genetic strategies, or using neutralising antibodies, lowers blood pressure by acting on the vascular wall and tubule sodium transport and reduces damage to target organs. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target in the future.


Assuntos
Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/fisiologia , Animais , Humanos , Camundongos
16.
J Clin Invest ; 131(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465052

RESUMO

Chronic kidney disease (CKD) remains a major epidemiological, clinical, and biomedical challenge. During CKD, renal tubular epithelial cells (TECs) present a persistent inflammatory and profibrotic response. Fatty acid oxidation (FAO), the main source of energy for TECs, is reduced in kidney fibrosis and contributes to its pathogenesis. To determine whether gain of function in FAO (FAO-GOF) could protect from fibrosis, we generated a conditional transgenic mouse model with overexpression of the fatty acid shuttling enzyme carnitine palmitoyl-transferase 1A (CPT1A) in TECs. Cpt1a-knockin (CPT1A-KI) mice subjected to 3 models of renal fibrosis (unilateral ureteral obstruction, folic acid nephropathy [FAN], and adenine-induced nephrotoxicity) exhibited decreased expression of fibrotic markers, a blunted proinflammatory response, and reduced epithelial cell damage and macrophage influx. Protection from fibrosis was also observed when Cpt1a overexpression was induced after FAN. FAO-GOF restored oxidative metabolism and mitochondrial number and enhanced bioenergetics, increasing palmitate oxidation and ATP levels, changes that were also recapitulated in TECs exposed to profibrotic stimuli. Studies in patients showed decreased CPT1 levels and increased accumulation of short- and middle-chain acylcarnitines, reflecting impaired FAO in human CKD. We propose that strategies based on FAO-GOF may constitute powerful alternatives to combat fibrosis inherent to CKD.


Assuntos
Carnitina O-Palmitoiltransferase/biossíntese , Regulação Enzimológica da Expressão Gênica , Túbulos Renais/enzimologia , Insuficiência Renal Crônica/prevenção & controle , Animais , Carnitina O-Palmitoiltransferase/genética , Modelos Animais de Doenças , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Fibrose , Túbulos Renais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Insuficiência Renal Crônica/enzimologia , Insuficiência Renal Crônica/genética
17.
Nefrologia (Engl Ed) ; 41(3): 244-257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36166242

RESUMO

Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and in target organ damage. Preclinical studies in mice have shown that systemic adminstration of IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Many studies in hypertensive mice models have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, the blockade of IL-17A by genetic strategies or using neutralizing antibodies, disminished blood pressure, probablyby acting on the small mesenteric arteries as well as in the regulation of tubule sodium transport. Moreover, IL-17A inhibition reduces end-organs damage. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target of hypertension-related pathologies in the future.


Assuntos
Hipertensão , Interleucina-17 , Animais , Anticorpos Neutralizantes , Citocinas , Humanos , Interleucina-17/genética , Camundongos , Sódio
18.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008801

RESUMO

The cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a mediator of the fibrotic responses induced by other factors including the transforming growth factor ß (TGF-ß). However, several studies have defined a direct role of CCN2 acting as a growth factor inducing oxidative and proinflammatory responses. The presence of CCN2 and TGF-ß together in the cellular context has been described as a requisite to induce a persistent fibrotic response, but the precise mechanisms implicated in this relation are not described yet. Considering the main role of TGF-ß receptors (TßR) in the TGF-ß pathway activation, our aim was to investigate the effects of CCN2 in the regulation of TßRI and TßRII levels in vascular smooth muscle cells (VSMCs). While no differences were observed in TßRI levels, an increase in TßRII expression at both gene and protein level were found 48 h after stimulation with the C-terminal fragment of CCN2 (CCN2(IV)). Cell pretreatment with a TßRI inhibitor did not modify TßRII increment induced by CCN2(VI), demonstrating a TGF-ß-independent response. Secondly, CCN2(IV) rapidly activated the SMAD pathway in VSMCs, this being crucial in the upregulation of TßRII since the preincubation with an SMAD3 inhibitor prevented it. Similarly, pretreatment with the epidermal growth factor receptor (EGFR) inhibitor erlotinib abolished TßRII upregulation, indicating the participation of this receptor in the observed responses. Our findings suggest a direct role of CCN2 maintaining the TGF-ß pathway activation by increasing TßRII expression in an EGFR-SMAD dependent manner activation.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Aorta/citologia , Receptores ErbB/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Smad/metabolismo
19.
FASEB J ; 35(1): e21213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368614

RESUMO

Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Deleção de Genes , Imunidade Celular , Nefropatias/imunologia , Rim/imunologia , Células Th17/imunologia , Animais , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Camundongos , Células Th17/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia
20.
Biomolecules ; 10(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987705

RESUMO

Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.


Assuntos
Fibrose/genética , Interleucina-17/genética , Diálise Peritoneal , Insuficiência Renal Crônica/genética , Soluções para Diálise/química , Fibrose/patologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Peritônio/metabolismo , Peritônio/patologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...